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DCRODUCTION

- Ultrasound B-scan imaging is now a well established and valuable clinical

tool. Inprovenents in transducer arrays and microprocessor controls have lead

to the development of real tine linear and sector scanners which produce images

of remarkable clarity and resolution compared with B-scanners of only a few

years ago. Further improvements in B-scan images are predicted to occur as

larger transducers apertures and improved dynamic focusing methods are employed.

The use of Doppler ultrasound alone or in combination with real time B-scan

imaging is expected to increase in importance as the clinical significance of

high resolution Doppler images is appreciated.

During the past decade X-ray C.T. (computed tomography) and recently NMR imaging

have made remarkable contributions to the field of diagnostic imaging. X-ray (C.T.)

and &MR images not only provide resolution of about 1 m but

also can be calibrated by absolute reference standards. The resulting quantitative

images have proven to have valuable diagnostic value because of the greater

ability thus provided to distinguish healthy and diseased tissue by their image

values. .

It is natural to ask if the successful B-scanner technology could be

improNed further by incorporating quantitative tissue characterization features.

Such tissue characterization features, based on back scatter, are now being

investigated for inclusion on clinical B-scanners, but the tissue characterization

they provide is based on structural and statistical properties of tissues and not

absolute tissue properties. The statistical properties of tissues, e.g., the

spatial Fourier transform, are often correlated with the state of health or disease

and are therefore valuable but they are not easy to measure quantitatively with

back scatter techniques unless special precautions are taken to model or compensate

for angular dependence. These back scatter statistical properties are dependent

on the gradient of the density of the tissues and thus the constant of integration



has been lost [1]. Thus we have partially answered our question. We have noted that

sane quantitative information about tissue properties can be obtained fron

B-scans but not the absolute mechanical properties of tissue. It is then appropriate -

to ask if ultrasound can in principle provide additional tissue properties. The

* answer is yes if the scattering into many angles is used. We next describe how

.such scattering has been investigated for imaging applications.

During the past decade many investigators have attenpted to develop an ultra-

sound tomography which could provide resolution and absolute tissue characterization

analogous to x-ray C.T. The first ultrasound C.T. systems appeared at

about the same tinme that NMR imaging was demonstrated and shortly after x-ray C.T.

was arnounced [2,3]. The development of ultrasound C.T. has not shown the rapid develop-

ment into a clinical tool as have the other modes. The rapid development of IM

imaging has been surprising even to many closely associated with medical imaging.

The reasons why ultrasound imaging has not followed the sane pace is now becoming

nore clear.

Ultrasound C.T. has not made the rapid progress of x-ray C.T. or NMR imaging

for several reasons: (1) the theory for x-ray C.T. or NM imaging is much simpler

than that of ultrasound C.T.. (2) neither x-ray or NMR imaging are subject to

diffraction and refraction effects, but these two effects dominate the ultrasound

signal detection process. (3) x-ray detector arrays and NMR detectors are

relatively simple to design and build compared to ultrasound detector arrays.

This chapter will address suggestions for improving the resolution and quantitative

imaging of ultrasound C.T. by addressing the theory for ultrasound C.T. and treating

refraction and diffraction effects.
S

Initial attempts to develop ultrasound C.T. greatly simplified the problem

by treating the propagation of ultrasound as if the acoustic energy followed

straight line rays like x-rays. As a consequence, refraction and diffraction

effects limited resolution to about 10 to 20 uavelengths. Correcting for refraction
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of the ray paths did not help because resolution is determined mostly by diffraction

effects. As the diffraction problem became better understood several investigators

suggested including diffraction and refraction in the ultrasound imaging formulations

by borrowing Wolf's clever perturbation theory, inverse Born, scattering algorithm

from optical holography theory [4,5]. Much effort has been expended in

developing this approach with the greatest success coming from replacing the Born

approximation with the more accurate Rytov approximations. Although this wrk has

brought fresh and important insight to the quest, there are several serious defects

in these Rytov or Born perturbation methods [ 6 ]: (1) these methods must assume

U unrealistically low absorption. (2) the refraction is only treated approximately,

e.g., the far field of a simple lens is not given correctly by either the Born or

Rytov approximate methods. (3) the inclusion of density scattering has been solved

but still depends on attenuation being treated correctly.

The use of an attenuating bath has been suggested to allow imaging of human

tissue at higher frequencies, e.g., I to 3 mhz. A new algorithm to allow better

treatment of refraction effects for ultrasound C.T. has been proposed [ 7 ]. Such

approaches may help, yet the fact remains that the perturbation methods are not

exact except in the limit of vanishingly small perturbations. Therefore, an ultra-

sound imaging method based upon a more exact treatment of the wave equation would

have the capability of imaging objects with larger attenua-

tion and larger variations in refractive index and density. Such a method would

also have the desirable feature of acting as a standard of couparison.

We are aware of two methods which do not depend on the object producing only

small perturbations to the total field. The first method is based upon extra-

polating the scattered data to zero wavelength. This method looks promising for

medical imaging and has potential for wider development and use if its sensitivity

to noise can be reduced [8,9].
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The second method is less sensitive to noise and provides "exact" inverse

scattering solutions (by exact we mean the equation or theoretical model used

for imaging contains no unrealistic or major approximations). The second method

although "exact" in the above sense is nevertheless iterative in nature and may

probably require a later generation of computers for cost effective implementation.

Nevertheless, the method is of academic and laboratory significance and may serve

as the starting point for further improvements in ultrasonic imaging a description follows.

ULTRASONIC IMAGING BY SOLUTION OF THE INVERSE SCATTERING PROBLEM

The ultrasound imaging problem in its most general and complete form is

equivalent to solving the so-called inverse scattering problem. The inverse scat-

tering problem may be defined as finding the spatial distribution y of material

properties so that the wave equation scattered field solutions f(s) for any incident

field f(i) matches the given scattered field. The solution to the direct scattering problem

is defined to be the solution f(s) (x) to a wave equation at some point x for

y given. Thus, the solution y to the inverse scattering problem is that y

for which the solution to the direct scattering problem matches given scattered

field values. In the usual ultrasound imaging environment only the scattered

fields on a detector are given by measurement, but the scattered fields within the

object are not known. If the fields were known within the object then the solution

to the inverse scattering problem could be obtained by a linear operation. Since

both the internal field and material property are unknown, the solution to the

inverse scattering problem also requires, at least implicitly, the solution to the

direct scattering problem.

Because of the past difficulty of solving the inverse scattering problem,

approximate solutions have been developed. One of the most widely known approximation

methods is based upon using first order perturbation theory to linearize the procedure

for solving the wave equation as a function of y . This approach leads to the

derivation of the well known Born and Rytov approximations [5]. For the Born
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approximation, equations for the perturbation in the acoustic pressure field p

and perturbation in material properties y are given by the equations

(2) y = + Pl

where p is the total field when y y 0 + y1  and P2  is the field when y= y0

where 7o is a constant and is the material property of the homogeneous background

[5]. The Rytov approximation is obtained by the transformations

(3) p exp(W)

(4) W = W+W

where W0 is the logarithm of the incident field when y= 0 , where W is the

logarithm of the total field when y = yo + yl and where WI  is the pertubation in

W caused by the perturbation yl in y

For medical applications, the assumption that y1 , P1 , and W are small with

respect to y0 , p0 ' and W0 , respectively, may in many cases be erroneous because

of refraction and attenuation. This may be seen by inspection of the Helmholtz wave

equation

2
(5) V2 p(2X) + W p(x) 0

[c(x)]

The speed of sound c(x) may be considered to be complex and we could write

c(x) - cR(x) + ic,(x) . However it is more convenient to first expand [c(x) ]- 2 by
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equation (2) before examining the real and imaginary parts. By adding

k2  2 -2 -2kF(x)p(x)=W (c 0 -[c(x)] )p(x) to both sides of equation (5) we obtain

(6) V2 p(x) + k[ - F(x)]p(x) = 0

where - w2/c2 is the background wave number squared. Thus by inspection of

equation (2) we see that y0  and Y1 = F(x)k . We now consider two examples
which illustrate the effect of F(x) on the relative sizes of p0 and p1

The first example is that of a simple lens. It is clear that a small value

of F(x) , say five or ten percent, distributed in a lens shaped region can focus

an incident plane wave to a local zone where the total field p may be many times

larger than the unperturbed field p0 . Thus, the scattered or perturbed field

p, can not be small in comparison to p0 . The second example is that of a plane

wave normally incident upon a block of homogeneous material with a small but finite

loss corresponding to the imaginary part of F(x) . It is easily shown that even

though the imaginary part of F (x) is small the line integral of the linear

acoustical attenuation coefficient can reduce the amplitude of the internal field

to a small fraction of the incident field in only 10 am. of travel. Soft tissue

has an attenuation of only about 1 db cm-  Mi. For an average speed of sound

of 1500 m. sec-l and at 1 Hz, 1 dbnrz 1  corresponds to a ratio of imaginary

to real part of the wave number of about 0.005. Nevertheless, at 1 Mfz at a depth

of 10 an in the block the field is down 10 db relative to the field at the surface,

that is, the pressure is reduced by 68 percent.

These examples illustrate the need for caution when applying the Born or

Rytov theory. The situation can be improved if the background fluid is tailored

to have a real and imaginary speed of sound equal to the mean respectively of the

real and imaginary parts of the speed of sound for the object in the background

fluid. A method for obtaining an inverse scattering solution to the exact Helmholtz
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wave equation or which does not require actual field to be nearly equal to the

incident field with no object present, wuld avoid difficulties illustrated by the

two examples above. We next review the background of a method for obtaining a

direct solution to the exact Helmholtz wave equation which we will use to develop

a robust inverse scattering solution to the exact Helmholtz wave equation.

Methods for solving the direct scattering problem by the method of moments,

of which the Galerkin method is a special case, are presented in the book by

Harrington [10] and the paper by Richnond [11]. Recently the method of Richmond

was adapted independently by Hapna=n [12] and by Yoon et al [13] to solve the

inverse scattering problem for the case of a single source. They found that the

inverse scattering problem for a single source is an ill-posed problem and therefore

very small amounts of noise in the data caused a large amount of noise in the

solution for y . As the number of points in the image domain grows, the condition

•*. number of the matrices to be inverted by the single source method grows rapidly and

the solution becomes unstable and inaccurate. The stability of the solution also

decreased as the detector to object distance was increased.

The ill-posed nature of the inverse scattering solution may be largely removed

by solving a system of nonlinear equations resulting from using multiple sources [14].

The multiple source solution has demonstrated good tolerance to additive noise in

the scattering date and is not sensitive to the position of the detection

for over-determined cases.

FORMULAION OF EQUATIONS WHICH MAY BE SOLVED FOP, DIRECT AND INVERSE SCATTERING SOLUTIONS

We now introduce an improved wave equation containing equation (6) as a

special case and introduce an equivalent integral equation. We then transform the

integral equation into a set of multivariate quadratic equations. The solution

to these quadratic equations lends to the direct scattering solution and the

inverse scattering solution.
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The wave equation for a body immersed in a homogeneous fluid is given by

(7) V2 fo(x) + k2f(x) = -kY K (x)fo(x) - V.[yp(x)Vf 0 (x)]

where f 0 (x) is a scalar field such as acoustic pressure for a source at position

0 , = w/c 0 , w = angular frequency of incident field, co  is constant speed of

sound in a homogeneous background fluid, yK = (K - K 0 )/ 0  and yp = (p- p0 )/p 0  are

the fractional change in compressibility K and density p , respectively outside

the body in the fluid background. A useful integral equation which is equivalent to

(7) and includes the boundary conditions is [1

()f 0 s (x) f W f (x) I J -kYK f( x)(X';X) +JYVf (x)Pgx;)dx

where x = (xl,... ,xQ) x' = (x i , ... ,xQ) are spatial coordinates in a space of

dimension Q < 3 , S)(x) is the scattered field f,(x) - f(i)_ , f(i)x) is

the field fo(x) for no object present; i.e., for YK = YP = 0 , and where

g(x' ;x) is a Green's function. For two-dimiensional problems g~x';x) = H0(kx-x)

where H .) is the first order Hankel function of the second kind. For three-

dimensional problems g(x';x) = (47x-x' ) - exp(ik0 Ix-x' I ) , and where J.- means

absolute value.

We now expand the fields fo,fCi), and f(s) and factors containing thep. 00 0
material properties using an accurate basis set {qi(x)} . Let

N W N
(9,10) f 0 (x) ai i(x) , f x) = b i i(x)
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(11,12) fs CX-) - d ip Pjx) k k0 y(x) )= c0i i(H')
N N

(13) P(x')Vf 0 (x') N i -l- Aq i 'pi(x')-q

where N is the number of basis functions and Q is the dimension of the space

and corresponding Greens function, and where q is a unit vector along coordinate
q

q . Upon substitution of (13) into (8) we obtain upon interchaning integration and

summation,
N N N Q

(14) ( Ca -b ) .(x) = G) + (x) Aq~j C)
1 Oi 1- j=1 c~ ji(X =1 q=1qj*q

where

(15,16) g.x W fg~x';xE)4.(x')dQ X', G .CX) =j [dS-p dX

Using the "expansion method" equation (14) could be developed into a system of

algebraic equations describing the scattering by evaluating (14) at a set of grid

points {x. } Alternately, by taking the inner product of (14) with all members

of a weighting or testing set of basis functions {Wi(x) } a system of N algebraic

equations may be generated by the 'method of moments" [10]. If Wi(x) - Cx) for

all i and { i} are independent then the procedure becomes the classical "Galerkin

method" [10]. If Wi(x) E 6x-x) the method of moments becomes the expansion

method. The choice of the expansion basis functions {'ip.x) } and the testing

functions {Wi(.x) } is problem dependent and often significantly effects the accuracy

of solution and the number of expansion basis functions needed to obtain a solution

[10]. The sinc basis functions have many properties which make them especially

attractive for applications using the method of moments and in the remaining sections

we will use only basis sets based on the sinc functions.
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ALRAIC SCATTERING EQUATIONS DERIVED USING SINC BASIS FUNCTIONS

The sinc functions are attractive as a basis set because when properly

formulated the basis set is complete, orthogonal and retains some local or regional

properties (by local or regional we mean that each coefficient of the basis

expansion are related to the values of the function to be expanded in a unique local

region and this property often aids in incorporating measurements or boundary

conditions) for representing spatially band limited functions.

In one-dimensions a function f(x) may be expanded in a basis set consisting

of sinc functions shifted in integral multiples of step size h as follows

(17) f(x) C(f,h) - [f(9.h)S(9,h)(x)

where the shifted sinc functions are given by

(18) S(9,h) (x) Sin[ ("1h) (x-£h) I- (n/h) (x-kh)

If f(x) is band limited to contain no Fourier components greater than '/h

aen f(x) = C(fh) The orthogonality of {S(P,h)(x)} is expressed by

(19) C(fh) (t)S(k,h) (t)dt = h f(2h)

The nth derivative of function C(f,h) has a sinc expansion given by

(20) d C(f,h) (x) h h 9- ) f(kh) IS(j,h) (x)

A.s( ., ) '1j
(21) 6i(n) (P 1)W
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In particular

(22) 6(l) { 0 ,

The cardinal function C(f,h) may be integrated by use of the following

formula

(23) C(f,h)(t)dt - h f(kh)

These and other useful properties of the sinc function for solving integral

equations and for other applications are given by Stenger [15 I.

We take products of Q sinc functions to form basis sets for problems in Q

dimensions. We illustrate this for two dimensions by setting

(24) Pi(m,n) (x) = S(m,h)(xl)S(n,h)(x 2)

to obtain

(25) fo(xl,x2) = f0 (mh,nh)S(m,h)(xl)S(n,h)(x2)
mn

Here i = i(m,n) means i is an index which indexes point (m,n) in a finite

two dimensional array of grid points. Thus by (9-12), (24,25) and by property

(17) we obtain relationships for the coefficients a0 i , b , ci as follows
O 0i

(26,27) a0i(m,n) = f (mhnh) boi(m,n) = fl)(mh,nh)

(28,29) doi(m,n) = f ()(mh,nh) , ci(m,n) = kg yK(mh,nh)f0(mh,nh)

11



A

The relationship between A , and f is obtained by noting that

yV'f-Vg - Y (x')j Of/ax) (ag/ax4) . We examine the factor yp(x')(af/ax')

and note that (af/Bx') has a sinc expansion via application of (20,21) to (23).
q

The result is the product of y and a sinc expansion of (af/ax') We next
P q

perform a sinc expansion on the product by use of (17). These nested expansions
are simplified by noting that S(£,h)(x = rh) = 6 fr (where 6ir = 0 if £#ir and

6 - 1 if Z = r) . Applying these steps for the terms y (Of/axl) and

YP(af/ax 2) we obtain on setting xI = x , x2 - y

(30b) (x,yy) -- = h- Y (mh,nh) 1[6 M f(mh,rh)]S(m,h)(x)S(n,h)(y)

( y mn £

We now have obtained expressions for a0 i, bOi - coj , i, and Aqj in terms

of f,(mh~nh) , , y<(mh,nh) and y p(mh,nh) as per (26-29) and (30). These

expressions could be substituted into (14) to obtain a set of equations with

coefficients Vi(x) , g, (x) and G j(x) to be evaluated. Instead of evaluating

the coefficients at all grid points (mh,nh) we use the Galerkin method to

expand gj(x) and G .(x) in terms of i(x) . Let

(31,32) gj~x) - J gji ~ix and G() W i(x)

where i(x) is given by (24). Thus, by (25) the coefficients gji an Gqji

are givenby

(33,34) gj i gj ss and G~i G Gj(x-)

4 12



On substitution of (26-29), (30) and (31,32) into (14) we obtain a set of

equations involving only

f*(mh,nh) ,%, 4 yK (mh,nh) y, (mh,nh) gji qji and i(mn)(X)

Thus on factoring, we obtain

f(S) (f - fu)). 2
(3) i i 4. i 0i ~ ko y,,Qxj)f 0 (,x,)g.. + A qjG bsil.

2.i qj qj.

where the sum over Aqoj represents the complete expressions for (30). According

to the Galerkin method we may eliminate the factor i by taking the inner product
of (35) with ipi Let us introduce the natural notation f,(mh,nh) L Ao~~) f~~)

K ~ ~~~~ ~ ~ ~ ~ fKi~m~n) =Kmn p@mn pimn(hn) yy '~h pm

A A

j (r i(m,nh ) A j i 6 (r,= t (m, n) aomn ) G _ Lo G ,t)(,n
S( . (, n) f(m ,nh)A AA AA

gj(r,t)i(m,n) = gi= g(r,t)(mn,n) and qj(r,t)i(m,n) =cGji =q(r,t)(m,n)

*[ where i = i(m,n)

Then by (19) and (30) we obtain

f(O) (in) 0 {k(r,t) f (r,t) g(r,t)(m,n) +

(36)Yp~, t) [ ( 1 )

(36) 'p(r, t) Pr fr(k,t) Gl(rt)(mn) +

6(1)P
kt fO(r,R,) G2(r,t)(m,n)]

Equation (36) is the complete equation for describing the direct scattering

problem with yK and yP known and the inverse scattering problem with y K and

Y* unknown. Note that the sums over r and t are convolutions because of the

definitions of the Green's function g(x' ;x) . The sum over i is also a convolu-

tion as seen from (20-22). The sums over r,t and k may be rearranged so that

all coefficients of each f are summed and grouped as a total coefficient.
f0(r,t)

Such a form is useful for direct scattering problems where the yK and y are

13



-. L - . -, = - - , . - . . .- . - •. ,

known. This form is given by

f(S f f(1) {kf +f(s) A -(i) _ k2 YK(r, t)g9(r, t) (m, n) +
¢(m~) f m~n)- Z#m~n)r,t

(37)
[6 tZ(l) G n + 6 ( 1) Y Grk P(. )(Z )(,n t£ Z p(r,£k) (r, Z) (me, n) }fO (r, t)

We next present methods for obtaining the direct and inverse scattering

solutions from (36) and (37) for the special case of y (x') = 0 . Even with this

restriction it will be clear that the general case of y (x') # 0 may be obtained

by extension of the method. This conceptually simple extension requires additional

programming complexity and additional memory for storing the coefficients G(r,9£)(mn)

and is therefore reserved for future publications.

MEHODS FOR SOLVING MDDEL EQUATIONS FOR CASE OF y = 0

In formulating the direct and inverse scattering solutions for the case

p 0 it will be useful to use the single index notion i to represent a point

x. with i = i(m,n) i.e. Ei(mn) = (xi,yi) = (mh,nh) since the more explicate

two index notation (m,n) is now not required. We also emphasize the major role

which subscript 0 will now play in the inverse scattering solution to obtain

*. unique solutions. In order to obtain a sufficient number of equations to solve

for f(s) it will be necessary to also solve for f (x) inside the body. Thus
0

. we must consider two sets of equations, namely, one set relating f s) anywhere

00Sto f inside the body and a second set relating f at point x i  in the body to

all other points xj in the body. It will also be useful to write these equations

in terms of residuals rlto and r2mo Thus we write

f N £i 0xI,...,N

(38 ) r .0 1 0 Z j ! T YJ f-0 C( i ) 0 ,

q' 14



(39) r .. y. f D02mP O 1 clKJ Dj 0 0

where cjj - gj2  and Dmj k2 gjm" The subscript m in (39) refers to a

measurement position on a detector. The subscript k in (38) refers to any grid

point in a region including the body. By inspection a necessary condition for

existance of a ccmmon solution to (38) and (39) in that the number of equations

exceed the number of unknowns, i.e., that M > N.

In his study of the direct scattering problem, Richmond [11] obtained a

similar set of equations to (38) and (39) above using pulse basis functions. The

advantage of the sinc basic functions lies in their econony. Richmond recommends

10 sample points per incident wavelength for his evaluation of C and D . to

be accurate for problems of low contrast, i.e., y Kl < .10 . We find that 4

samples per incident wavelength is sufficient for accurate reconstruction of yK

for objects whose spatial frequency spectrum of y K does not exceed the reciprocal

of the incident wave length. For solving the direct scattering problem, i.e.,

finding f~s) , we follow the steps in Richmnd's method, namely: first, for

given yK solve the linear system (38) for f j , second, for f j frm step one,

and for given y compute f(s) by evaluating the sun in (39).

Solving the inverse scattering problem is more difficult since both Yj and

f are unknown and are present in (38) and (39) as quadratic terms or products
Oi

yj f j . We have investigated [16,17] three methods for solving this nonlinear

problem: (1) iteratively solving alternate linear systems method, i.e., solving

of (38) for f j with y K fixed then solving (39) for yKj with f j fixed,

(2) nonlinear row action methods [18]. (3) and optimization techniques (19,20].

The last two methods are complex and have not been computationally faster than the

first method [17] so we only describe the alternate iterative method (or AIM method

for short).
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The AIM method for iteratively solving alternate linear systems may be

described by the following algorithn: Let f ( k ) or y(k) be the kth iterate of

0 f or y respectively. Then

1. Pick a trial value for y (x) and fk)(x) . Pick accuracy 6

2. Solve (38) for f(k+l) (x) with y (x) fixed.
3. Solve (39) for Y (k+ l ) with f~k+l) (x) fixed.

4. Test for convergence by forming the objective function.

(40) F = + r3rOj , J

If F0B < 6 , go to step 5, else go to step 2.

5. Stop. Print results, make file, display image, etc.

Various methods for solving the linear systems may be enployed such as Gauss

elimination, fixed point methods (applicable only to equation (38)), e.g.

(41) f(k+1) N N k k)C fi

or the Kacznmarz method [21,22 ].

RESULTS OF CM ER SIMULATION STUDIES

The performance of the 5-step algorithm for obtaining yK for the case

=P 0 was investigated using an 11 by 11 pixel test object. Simulated scattering

data was obtained by the following two steps: First solve equation (38) for f0 ,

with y . given by the values of the test object. Second using the f0 £ values so

obtained and the given y j values, evaluate f()-- from equation (39). The values

of f(s) thus obtained represent noise free data or f(s) The distribution is

normalized such that IAf(S)l 1 /II f& 1 - 8. Here K.-I  means the "L one nor&'
(also called L norm, IfDl= Elf i l) • Thus noisy data f(s) + Af(s) is

obtained for algorithm evaluation.
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Figure 1 shows the 11 by 11 test object. Figures 2-3 show the inverse scattering

solution obtained using noisy scattering data with 8 = .10 , the data over-

determined such that M - 2.4N , and the image band limited to have no spatial

frequencies higher than the reciprocal of the incident fields wave length. The

detector radius was 10 incident field wave lengths and the pixel separation was

one fourth incident field wave lengths. If a picture quality index or "one norm

error rate" a = Bypicture-YTRUl 1/YTRUE 1 is computed it is seen that a - .06

Without the spatial filtering a - .17. These results suggest that with over-

determination of the data, with small contrast i.e., IyI < .10 , with a small

detector radius, and with a small number of pixels (here N = 11 x 11 = 121) the

problem is very well posed.

The question of the effect of increasing the number of pixels N and the

contrast in y on the noise properties of the solution image was investigated.

We also investigated the effect of increasing the detector radius. This investiga-

tion was conducted to determine the inverse scattering solution when the internal

fields were known with certainty. An image computed using the 5-step algorithn,

could not have less noise than the a method using the correct internal fields.

The solution to the inverse scattering problem with the correct internal fields

given, i.e., evaluating (39) for y , we call the "pseudo inverse scattering

problem' [23]. The simultaneous solution of equations (38) and (39) we call the

"complete inverse scattering problem" [23].

Our study was composed of the following 6 steps which provide two different

upper bounds or estimates on the noise present in the solution to the complete

inverse scattering problem.

1. Generate the scattered field data which muld be observed at a detector

using a Gaussian object distribution. Define f(s) as the composite

column vector of PM components given by
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(42a) f(s) ( f(5) f(S) f(S) f(s) 1T
- -1 '-2 ''0 '*

where

(42b) f(S) A{f(SC) qv f(SC)(X) ~ c
-0++>+ 0 .... , 0, .

2. Generate a Gaussian random noise vector 6f(s) with a mean of zero

and normalized such that

nAf(s)I
(43)- =

If f(s) I

3. Starting with the overdetermined linear systen (39)

(44) Ay = f(s)

the least squares solution for I which we accept as "the best

solution," is obtained by solving:

(45) AHA - AHf(s)

Here AH is the complex conjugate transpose of A

4. Coopute the "upper bound on the norm error ratio in Ay ," B ,using

the condition number inequality [23, page 4311.

(46) H IAHAf(s) II2
(46 < KI (A A )  IHf(s)l BU "

Here K1 (AHA) is the one norm condition number of AHA.
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5. Determine the actual norm error from the true value of y (x.) , i.e.,

TME ,by solving for (yTR +  y -N from the equation

(47) AA( +A) AH(fs + Afs)

6. Determine Ay by solving (47) for (T + A) and compute the "one

norm error ratio of the image" or a by

(48)Ku l i

Fram this type of analysis of the pseudo-inverse problem, we have found

the following trends.

1. For a given grid spacing h , the condition number KI(AHA) is an

exponentially increasing function of the edge dimension n = N of

the square imaging grid.

2. Although the condition number and, hence, the error bound in (46)

are exponentially increasing with increasing edge dimension, the actual

error as conputed by (48) does not show this increase with edge

dimension.

3. The amount of overdetermination required to make the norm error in the

image as low as the norm error in the scattered field is extensive, as

nuch as 300 percent.

4. For weakly overdetermined systems, increasing the detector radius

significantly increases the condition number, but for strongly over-

determined systems, it makes very little difference.

5. Increasing the percentage overdetermination improves (decreases) both

the upper bound B and the actual norm error a in the image.
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6. For a fixed radius and number of pixels and for fixed noise in the

scattered field, the condition number and noise in the computed image

of y both decrease as the contrast in the test object is increased.

For example, for detector radius R = 10 and 300 percent overdetermined

data and for a 7 by 7 image, the condition number and noise are 860

ad 6 percent, respectively, for a test object consisting of a centered

Gaussian radial distribution having a peak complex value y of 0.1-

i 0.01, but the condition number and noise are 200 and 4 percent,

respectively, for the same test object with Gaussian peak of 1.0-i 0.1

SU44NRY

Presently clinical ultrasound imaging is done almost exclusively with the

B-scan mode (a 2-D echo strength to brightness mnode) with A-scan (an amplitude

of echo graph along a single line) or with Doppler scanning (for measuring blood

flow velocity). Ultrasound transmission computed tomography has not found

clinical application yet because of the low resolution (no better than 5 to 10 rm)

of the time of flight and attenuation images. An improved transiission technique

called diffraction tcmngraphy is based on perturbation solutions to the Helmholtz

wave equation and in principle provide improved resolution for very low attenuating

objects, but has as yet not been implemented due to significantly large attenuation

in tissues. Diffraction tomography is based on the use of the so called Born or

Rytov approximation and therefore does not provide a ccmplete description of wave

phenomena.

We have developed a method for solving an exact wave integral wave equation

for an inverse scattering solution for both the compressibility and density

distributions in a body. Our method depends on the use of multiple incident fields

and the representation of the total fields and material properties in a basis

function expansion. These techniques are modifications of the moment method or

Galerkin method. The solutions obtained by this method, when redundant data are
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used, are unique and are stable even with noisy data. We illustrate the

robustness of our method by presenting a solution image made with 10 percent

noisy data. We also provide tabulated data from experiments which show the

effect of picture size (number of pixels) and degree of overdetermination

on the image quality. The present algorithms used for obtaining a solution

require an enormous amount of computation and therefore are too slow and

expensive for clinical applications [24]. Lrprovements in algorithms speed [24] and

anticipated advances in computer technology could open applications for

laboratory scanning and eventually perhaps even for clinical scanning for

Galerkin or moment method solutions. The demonstration of the accuracy and

robustness of these new methods for a small number of pixels should act as

an incentive for further research into method of moment or other uore exact

approaches to inverse scattering.
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r 10 A 50% Over 100% Over 200% Over 300% Over
0 0.1- jO.01

S5% Noise BU BU  a BU c BU a

3 x 3 - 45.0 .70 .27 .083 .22 .093

5 x 5 220 .91 8.7 .12 .74 .057 .84 .049

7 x 7 4 x 104 4.90 220.0 .47 15.00 .140 6.40 .060

TABLE 1. Upper bound on the norm error B and actual norm error a for

various size images as function of percent overdeterination of

the problem. Constant grid spacing h 1 1/4 A , problem size is

NxN , detector radius is at 10 wavelengths. Five percent Gaussian

noise was added to the scattered field. A two-dimensional Gaussian

test object similar to that in Figure 1 was used.



0 0 1 4 8 10 8 4 1 0 0
0 0 0 0 0 -1 0 0 0 0 0

0 2 10 25 43 52 43 25 10 2 0
0 0 -1 -2 -1 -5 -1 -2 -1 0 0

1 10 36 91 158 190 158 91 36 10 1
0 -1 -3 -9 -15 -19 -15 -9 -3 -1 0

4 25 91 229 398 478 398 229 91 25 4
0 -2 -9 -22 -39 -47 -39 -22 -9 -2 0

8 43 158 398 691 831 691 398 158 43 8
0 -I -15 -39 -69 -83 -69 -39 -15 -4 0

10 52 190 478 831 1000 831 478 190 52 10

-1 -5 -19 -47 -83 -100 -83 -47 -19 -5 -1

8 43 158 398 691 831 691 398 158 43 8

0 -4 -15 -39 -69 -83 -69 -39 -15 -4 0

4 25 91 229 398 478 398 229 91 25 4
0 -2 -9 -22 -39 -47 -39 -22 -9 -2 0

1 10 36 91 158 190 158 91 36 10 1
0 -I -3 -9 -15 -19 -15 -9 -3 -1 0

0 2 10 25 43 52 43 25 10 2 0
0 0 -1 -2 -4 -5 -4 -2 -1 0 0

0 0 1 4 8 10 8 4 1 0 0
0 0 0 0 0 -1 0 0 0 0 0

FIGURE 1. An 11 by 11 image of a Gaussian test object. The pixels, i.e., grid

points, are separated by 1/4 wavelength. Thus, the image is 11/4 by

11/4 wavelengths. Each pair of upper and lower numbers corresponds

to a scaled value of Yk at each grid point. The top number in each

pair is 10,000 tines the value of the real part of Yk and the bottom

number is 10,000 times the imaginary part of yk . Using this test

object, simulated scattering data was obtained using the mthod of

mments to solve the direct solution. Ten percent Gaussian random noise

was then added to the simulated scattering data, i.e., the ratio of the

one norm of the noise to the one norm of the scattering data is ten per-

cent. The simulated scattering data with noise thus generated was used

as input for the method of mments inverse scattering solution method.

The results of the calculations to retrive the original object are shown

in the next figure.



-16 6 -2 -2 20 S -9 2 20 -29 3e
12 0 -11 -2 -35 43 -22 19 -2 -14 -21

-3 33 -17 29 40 68 69 12 -3 49 -27
-8 12 -6 -10 45 -33 42 -30 0 5 -10

3 -18 52 91 16A 205 118 100 21 -19 21
30 -15 7 -14 -49 1 -71 22 0 -2 14

3 38 85 215 377 A54 458 200 97 26 -4
-12 30 -16 -25 -65 -51 -20 -31 -13 14 -14

-8 37 186 365 706 830 635 403 186 48 10
19 -39 -4 -80 -61 -81 -60 -24 7 -46 13

18 39 204 479 834 1004 839 485 192 V -5
-5 21 -43 -37 -90 -86 -72 -34 -34 -13 -25

-2 34 157 411 695 825 70A 393 163 28 -5
-21 26 -30 -43 -71 -98 -91 -18 -11 -25 0

a 24 131 225 373 495 393 234 68 61 1e
14 -42 3 -34 -33 -52 -25 -29 5 12 0

1 34 72 162 191 179 79 37 -13 -2
-, 46 -40 9 -25 -23 4 1 16 -38 28

-18 12 26 -11 74 47 41 16 23 9 15
-9 -18 41 -13 -2 6 -11 -3 -31 27 -31

4 9 -2 13 15 22 -1 20 5 2A -4
-20 15 -25 38 -11 16 -12 16 24 0 23

FIGURE 2. Reconstructed image of object shown in Figure 1 using the method

of mmnts without spatial filtering. The image was made fron

simulated scattered data with ten percent added noise using the

test object of Figure 1 and the iterative reconstruction algorithn

described in the text. The above results after 20 iterations shows

about 17 percent noise, i.e., a - 0.17 from equation (48).
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0 -2 0 8 17 is 11 3 2 5 6
2 0 -4 -3 1 6 6 1 -4 -8 -9

1 0 4 20 41 49 37 15 2 2 5
4 1 -2 -4 -3 -2 -2 -2 -1 -1 -2

3 8 31 86 153 186 157 87 27 3 3
6 4 -3 -15 -22 -23 -17 -8 0 4 3

5 21 89 234 400 477 406 240 90 18 4
6 4 -11 -26 -33 -5S2 -:36 -to -7 -2 0

7 33 156 409 688 8ll 688 .12 162 38 8
2 0 -20 -53 --80 -80 -57 -31 -17 -14 -9

8 39 189 491 823 967 817 488 192 45 10
-1 -1 -23 -56 -88 -93 -70 -39 -21 -17 -13

8 36 161 416 698 822 695 410 1M5 32 8
-1 -4 -18 -45 -73 -82 -64 -31 -14 -9 -8

7 25 95 241 408 487 A14 240 83 13 4
0 0 -9 -27 -45 -51 -39 -19 -5 0 0

6 13 35 86 152 187 160 91 30 4 30 1 0 -9 -17 -18 -11 -3 0 1 2

4 4 6 18 36 44 37 22 11 7 4
-3 0 4 3 0 0 2 3 2 0 0

3 1 2 9 17 17 12 9 10 10 4
-5 -2 4 7 5 1 0 2 3 2 0

FIGU 3. Reconstruction of image shown in Figure 1 using the method of ments

and spatial filtering. This image is the spatial filtered version of

Figure 2. Since Figure 2 is sampled at 4 samples per wavelength of

the incident field the image contains noise frequencies up to twice

the reciprocal of the incident fields wave length. Let X0 be the

incident field's wavelength. Then spatial frequencies in the range

fran 1/X 0  to 2/x0 may be removed from Figure 2 without effecting

the practical resolution limit of the image of yk . Figure 3 is the

image in Figure 2 filtered in this marer. The noise is reduced

considerably since a as defined by equation (48) is reduced from

0.17 in Figure 2 to 0.05 here.
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ABSTRACT

This paper describes a Galerkin scheme which uses a sinc basis (i.e.,

translations of sin(ix)/(vx) -- [15]) to carry out an ultrasonic tomography

inversion based on the equation

(1)f + k2 f = -k 2 y f - V.[Y pVf]

In (1), f denotes the sound pressure,

k = 2 r x frequency x ' , ffi (Y ' c0)/K 0  , yP (p-p0 )/p 0  where 1C

(rsp. K0) denotes the compressibility of the body (rsp. the fluid surrounding

the body) and p (rsp. p0) denotes the corresponding density. The
02

reconstruction of the functions y and -f in 12  (n = 2 or 3) is based on

measuring the sound pressure f on a finite number of n-i dimensional

hyperplanes for each fixed source, and then repeating the experiment using a

finite nunber of source positions. The process is nonlinear, since all

of f , y and y must be reconstructed in the interior of the body. We

thus describe an iterative procedure for carrying out the reconstruction. An

example is described, illustrating a two dimensional reconstruction in the

presence of 10% Gaussian noise.
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